

Magnetism and Electromagnetism SPH4C

The strongest permanent magnets are made from	(lanthanoid) elements
the strongest of these being	-iron-born (NIB) magnets.
Current (moving charge) will also produce a magnetic to	field. This is called
To show that a current, field line, or force is directed ou	at of the page (towards us), we draw:
To show that a current or field line is directed into the p	age, we draw:
Right-Hand Rule #1:	
When the thumb is pointed in the direction of	Electric current I
the fingers in the direction of	B Magnetic field
To strengthen and straighten the magnetic field, we coil	
the current-carrying wire into a	. D
Right-Hand Rule #2	
When the fingers are curled in the direction of	Field (North)
the thumb indicates the direction of	Current
Since current will produce a magnetic field, the interaction of this field with an external magnetic field	
will result in a acting on the moving charge. This is the	
The magnitude of the magnetic force F_M on a current-carrying wire is directly proportional to the	
and o	f the wire and to the
	:
Note that <i>B</i> , the magnetic field, is measured in	·
The magnitude also depends on the	between the magnetic field vector and the
current vector.	

What is the direction of the force (if any) in each of the following cases?

More Practice

The diagram at right shows two current-carrying wires between the poles of a permanent magnet. The force on each wire is directed:

- A. up on the left wire, down on the right wire
- B. down on the left wire, up on the right wire
- C. up on the left wire, up on the right wire
- D. down on the left wire, down on the right wire

